Involute of a Circle

From Math Images
Revision as of 12:22, 17 April 2012 by Wyattsc (talk | contribs)
Jump to: navigation, search
Inprogress.png
Involute of a Circle
Involute of a circle.gif
Field: Geometry
Image Created By: Wyatt S.C.

Involute of a Circle

The involute of a circle is a curve formed by an imaginary string attached at fix point pulled taut either unwinding or winding around a circle.


A More Mathematical Explanation

Note: understanding of this explanation requires: *Alegbra 2, Geometry, Pre-Calculus

When deriving the equation to graph the involute of a circle, it actually has to do with measuring ri [...]

When deriving the equation to graph the involute of a circle, it actually has to do with measuring right triangles.

If you take a point on the involute of a circle with radius 2, where the imaginary string is unwinding and starts at point (2,0), and the string is parallel to the x axis for the first time, that length would be {pi}. This is because the imaginary string would have unwound a quarter of the circle's circumfrence. So \frac{4\pi}{4} is {pi}

The radius is 2, so using those two measurements we can find r (or the distance from the origin to the point on the involute curve.

So if you call the radius of the circle a (2 in this case) and


Why It's Interesting

This is very interesting for many reasons. It is amazing that what looks to be a very complex figure's equation can easily be derived using understanding of just geometry and some pre calculus.


The involute of a circle appears commonly in every day life. Other than the simple tetherball which is more of a model for the involute of a circle. The most commonly used gear system utilizes the involute of a circle. The teeth of the gear are involutes.

This allows the contact of the two interlocking teeth to occur at a single point that moves along the tooth. This allows the transfer of energy to one powered gear to a powerless gear smooth and not require as much energy.

Involute wheel.gif


Teaching Materials

There are currently no teaching materials for this page. Add teaching materials.




References

http://en.wikipedia.org/wiki/Involute#Involute_of_a_circle http://en.wikipedia.org/wiki/Involute_gear





If you are able, please consider adding to or editing this page!


Have questions about the image or the explanations on this page?
Leave a message on the discussion page by clicking the 'discussion' tab at the top of this image page.